
Technische Universität München
Chair of Theoretical Information Technology

Prof. Holger Boche

Topics in Optimization for Data-Driven
Applications

Accelerated Nesterov
5 February 2020

Author: Mariem Khlifi
Matriculation Number: 03709738

1

Contents

1 Introduction 3

2 Momentum Update 4
2.1 The Idea behind the Momentum Update 4
2.2 Nesterov Accelerated Gradient 5

3 Applications of Nesterov Accelerated Gradient 7

4 Insights into the Behaviour of The Nesterov Accelerated Gradient 8
4.1 Derivation of a Second Order Differential Equation for the Nes-

terov Scheme . 9
4.2 Convergence Rate . 10
4.3 Strong Convexity . 11

5 Conclusion 12

2

1 Introduction

Optimization is a problematic at the core of different fields, be it in computer
science, communication engineering or optics. It usually takes the following
form:

min f (x)

The need to find the parameters that will ensure an optimal behaviour has
always been existing because we do not dispose of unlimited computational
resources nor execution time. For this reason, many methods were engineered
to solve this problematic while overcoming all the mentioned problematics.

There are two major groups of methods in optimization that can be clas-
sified into first order and second order methods. Some famous first order
methods have shown weaknesses when it comes to dealing with saddle points
and local extrema. The simplicity of the first order methods comes with a price
as it’s practically impossible once you land in one of these saddle points to
escape from them. This is where second order methods show their strength,
because the use of the hessian helps in adding another consideration to detect
whether an extrema was actually encountered or not.

Even though it seems that with second order methods, we should have our
issues solved, it’s unfortunately not the case. In fact, current data-driven appli-
cations use a lot of data and it’s impossible with the tools at our disposal to rely
on second order methods. In fact, the computation of the hessian needed for
these second order methods can be very expensive as storing the matrix alone
would need around 3725GB of memory for 1 million parameters[1]. Also, the
second order methods are not compatible with mini-batches, a very prominent
notion in machine learning.

For these reasons, it is safe to say that our focus should remain on first
order methods. Fortunately, there are variations of the vanilla gradient that
overcome the issue of performance which come with the first order methods.
The solution to this was first introduced through momentum updates in the
form of a classical momentum update or its variation, a better performing
method under the name of Nesterov Accelerated Gradient.

The very idea of momentum was actually born from derivations from
a second-order ordinary differential equation (ODE) but the modifications
brought with the Nesterov Accelrated Gradient are yet to be explained using
an ODE.

3

Through this present review, we will first introduce the idea of momentum
and the Nesterov Accelerated Gradient. We will also get to see the advantages
that the momentum update brings to many applications. We will then intro-
duce some of the insights that will help us understand the principles behind the
behaviour and the performance of the Nesterov Accelerated Gradient through
the usage of a second-order ordinary differential equation[2].

Even though optimization methods that work for both non-convex and
convex functions exist, we will put our focus on the optimization of convex
functions going until exploring the specificities of strongly convex functions
and how to ensure that the desired properties will hold.

2 Momentum Update

The basic Gradient Descent can be replaced with momentum updates for a
better performance. The idea of Gradient Descent is still there but enhanced
to overcome the convergence issues. It seems that the improvements are not
only in escaping the wrong points but improving accuracy and time needed to
reach the optimizer.

2.1 The Idea behind the Momentum Update

What characterizes the Momentum Update is the memory term that is added.
The memory term is important for specific applications like Recurrent Neural
Networks where past events should be remembered for as long as possible[3].
We can see the update rule below:{

xk+1 = xk + ν ∗ vk

vk = µ ∗ vk−1 −∇ f (xk)

We can indeed see that this is derived from the classical Gradient Descent
when we replace µ with 0. We will then end up with:

xk+1 = xk − ν ∗ ∇ f (x)

The figure 1 visually explains what happens when Momentum Update is
used instead of a vanilla Gradient. We clearly notice that the step resulting
from the momentum advances faster. We can also see from the momentum
update set of equations that terms with the indices k, k− 1 and k + 1 all appear
at once which supports the reason behind calling the momentum term the
memory term.

4

Figure 1: Explanation of the Momentum Update[1]

2.2 Nesterov Accelerated Gradient

Nesterov Accelerated Gradient is a variation of the Momentum Update. The
update rule has a different principle of how to execute the look-ahead. The
update rules are described below:{

xk+1 = xk + vk

vk = µ ∗ vk−1 − ν ∗ ∇ f (xk + µ ∗ vk−1)

The figure 2 visually explains the principle behind the Nesterov Accelerated
Gradient when it comes to choosing the look-ahead point at which the gradient
will be evaluated.

The difference between the Momentum Update and Nesterov is that the
former changes the direction of descent by looking farther from the current
evaluated gradient using the momentum step whereas Nesterov evaluates the
gradient at a look-ahead point to be sure that there is no strong variation from
the direction of descent when the momentum step is later added.

Both provide similar performances but Nesterov performs better in certain
situations and this is thanks to the gradient direction correction.

We will show in 4 that the factor
√

s is responsible for making Nesterov
faster than the normal Gradient where a factor of s is introduced. Considering
that s is small,

√
s is even smaller and allows a faster navigation that reaches

the optimum under a smaller number of iterations as depicted in the figure 3.

5

Figure 2: Explanation of the Netserov Update[1]

Figure 3: Comparison between the normal gradient and Nesterov[1]

6

Figure 4: Comparison of the convergence of different methods[4]

3 Applications of Nesterov Accelerated Gradient

In this part, we are going to discuss some of the simulations that were run
to show what characterizes the Nesterov Accelerated Gradient in comparison
with the classical Gradient Descent.

Figure 4 shows the performance of the three commonly used methods:
Gradient Descent(green), Momentum Update(blue) and Nesterov Accelerated
Gradient(red).

Nesterov Accelerated Gradient performs the best with the right parameters.
The optimal point is reached faster and in a smoother way. The importance
of the parameters lies in the choice of the time-step because in general, a big
time-step will induce divergence. This will be further explained in 4.2.

We also tried to detect the optimization effect of using Nesterov instead
of the classical Gradient Descent in another application within an area that is
benefiting from the improvements of optimization methods, especially first
order methods, which is deep learning. In this example, we took a simple
neural network architecture that will be trained on the MNIST dataset[5]. The
architecture is shown in figure 5.

Considering that the number of iterations in this example is fixed, we will
evaluate for the same time span the accuracy of the model, i.e how close were
the parameters to the optimal values using both Nesterov and the classical
Gradient Descent.

We tried different network architectures by varying the size of the hidden
layers. The accuracy is plotted with respect to the size of the parameters in the
neural network which depends on the size of the hidden layers. The number
of parameters vary from the order of 104 to the order of 105. The performance

7

Figure 5: The Neural Network Architecture

Figure 6: Comparison of Nesterov and Vanilla Gradient Descent for Neural
Network Training

of both methods are plotted against each other in figure 6 where green stands
for the Nesterov Accelerated Gradient and blue stands for the Gradient Descent.

It can clearly be noticed that Nesterov outperforms the classical Gradient
Descent in most of the cases, especially for bigger neural networks architec-
tures.

4 Insights into the Behaviour of The Nesterov Ac-
celerated Gradient

Through this section, we will use results advanced in [2] to explain the be-
haviour of the Nesterov Accelerated Gradient. This is mainly based on a second
order differential equation. So, we will first start by deriving this differential
equation and then we will use it to obtain results concerning the convergence
rate and other properties.

8

4.1 Derivation of a Second Order Differential Equation for
the Nesterov Scheme

To derive the ODE, we will use the hint consisting of the three time spans k− 1,
k and k + 1 that portray a second order differential equation, because from
these three data points we can obtain the velocity and the acceleration.
We will use the update rules as described in [2] similar to the update rules
mentioned in 2.2. {

xk = yk−1 − s ∗ ∇ f (yk−1)

yk = xk − k−1
k+2 (xk − xk−1)

We then combine these two rules as follows:

xk+1 = yk − s ∗ ∇ f (yk)

= xk +
k− 1
k + 2

∗ (xk − xk−1)− s ∗ ∇ f (yk)

From this we deduce:

xk+1 − xk√
s

=
k− 1
k + 2

xk − xk−1√
s

−
√

s ∗ ∇ f (yk)

We introduce the following notations:
t = k

√
s

X(t = k
√

s) = xk

X(t +
√
(s)) = xk+1

We now use Taylor expansion on the last equation:
xk+1−xk√

s = Ẋ(t) + 1
2 Ẍ(t)

√
s + o(

√
s)

xk−xk−1√
s = Ẋ(t)− 1

2 Ẍ(t)
√

s + o(
√

s)

For ∇ f (yk), we are using a heuristic and we are supposing that through a
Taylor expansion we obtain

√
s∇ f (yk) =

√
s∇ f (Xt) + o(

√
s)

Taking all of these considerations into account we obtain:

Ẋ(t) +
1
2

Ẍ(t)
√

s + o(
√

s) = (1− 3
√

s
t

)(Ẋ(t)− 1
2

Ẍ(t)
√

s + o(
√

s))−
√

s∇ f (Xt) + o(
√

s)

This is equivalent to:

9

√
s(Ẍ(t) + 3

t Ẋ(t) +∇ f (Xt)− 3
2t sẌ(t) + o(

√
s) = 0

We then divide by
√

s to obtain:

J = (Ẍ(t) +
3
t

Ẋ(t) +∇ f (Xt)−
3
2t
√

sẌ(t) + o(1)

= 0

When s→ 0, we obtain:

lims→0 J = Ẍ(t) + 3
t Ẋ(t) +∇ f (X(t))

The differential equation is then:

Ẍ(t) +
3
t

Ẋ(t) +∇ f (X(t)) (1)

4.2 Convergence Rate

The factor 3
t in the ODE is the friction factor and it explains the behaviour of

the convergence for the Nesterov method. In fact, one of the conventions was
that t = k

√
s, where s is the step size. The behaviour can be summarized below

and it confirms that a very large step induces divergence and overshooting:

t small t large
3
t large 3

t small
Overdamped System Underdamped system

Equilibrium reached fast Overshooting and Divergence Risk

Table 1: Effect of the friction parameter

In figure 7, the effect of the variation in the friction parameter on the be-
haviour of the convergence is shown to portray the properties summarized in
the table 1.

Now, we want to prove the convergence rate O(1
t2) of the Nesterov scheme

using the ODE. This means that:

f (X(t))− f ∗ ≤ 2 ||x0−x∗ ||2
t2

For this purpose, we consider the following energy functional and its
derivative that are used to study the system’s equilibrium:{

ε(t) = t2(f (X(t))− f ∗) + 2||X + t
2 Ẋ− x∗||2

ε̇(t) = 2t(f (X)− f ∗) + t2 < ∇ f , Ẋ > +4 < X + t
2 Ẋ− x∗, 3

2 Ẋ + t
2 Ẍ >

10

Figure 7: Effect of the choice of the friction parameter on the convergence
properties[2]

From the ODE, we have:

t
2 Ẍ(t) + 3

2 Ẋ(t) = − t
2∇ f (X(t))

We replace it into ε̇ and considering that f is convex we obtain:

ε̇ = 2t(f (X)− f ∗)− 2t < X− x∗,∇ f (X) >

≤ 0

We deduce that ε is decreasing and from that follows the following:

f (X(t))− f ∗ ≤ ε(t)
t2

≤ ε(0)
t2

= 2
||x0 − x∗||2

t2

We then obtain the result confirming that the convergence rate is of O(1
t2)

using the ODE.

4.3 Strong Convexity

Strong convexity is a desirable property for functions as it allows a linear
convergence rate using the classical Gradient Descent algorithm. However, in
Nesterov the convergence rate is O(1

t2) or might even be O(1
t3).

A way to overcome this problem is by using Restarting, which resets the
friction factor, because as the time evolves the friction factor decreases and
as a result the system will exhibit overshooting which explains why a lot of
oscillations occur.

11

Figure 8: Effect of restarting on the convergence rate[2]

A value that can be chosen for the restarting of the friction factor is
√

L−√µ√
L+
√

µ

where L is the Lipschitz-coefficient of the function.
We can observe the effect of restarting in the figure 8 below which shows that
from the oscillatory behaviour of the Nesterov method (black) we can switch
to a linear convergence rate (red) if we use the Restarting method.

5 Conclusion

In the present review, we have seen the need for a well-performing first order
method for optimization problems. Specifically, we have seen the Nesterov
Accelerated Gradient and its characteristics.

We also touched on some of the important points that were used to de-
scribe the Nesterov scheme and explain the underlying behaviour, notably the
convergence rate and the method of restarting for strongly convex functions
used to ensure a convergence rate comparable with the classical Gradient
Descent. These explanations were advanced thanks to the usage of a second
order differential equation.

12

List of Figures

1 Explanation of the Momentum Update[1] 5
2 Explanation of the Netserov Update[1] 6
3 Comparison between the normal gradient and Nesterov[1] . . . 6
4 Comparison of the convergence of different methods[4] 7
5 The Neural Network Architecture 8
6 Comparison of Nesterov and Vanilla Gradient Descent for Neu-

ral Network Training . 8
7 Effect of the choice of the friction parameter on the convergence

properties[2] . 11
8 Effect of restarting on the convergence rate[2] 12

13

List of Tables

1 Friction Parameter . 10

14

References

[1] A. Karpathy. CS231n Convolutional Neural Networks for Visual Recognition.
url: http://cs231n.github.io/neural-networks-3/#sgd.

[2] W. Su, S. Boyd, and E. Candès. “A differential equation for modeling
Nesterov’s accelerated gradient method: Theory and insights”. In: 17
(Sept. 2016).

[3] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu. “Advances in
Optimizing Recurrent Networks”. In: Acoustics, Speech, and Signal Process-
ing, 1988. ICASSP-88., 1988 International Conference on (Dec. 2012). doi:
10.1109/ICASSP.2013.6639349.

[4] ZhouYuxuanYX. Matlab-Implementation-of-Nesterov-s-Accelerated-Gradient-
Method-. url: https://github.com/ZhouYuxuanYX/Matlab-Implementation-
of-Nesterov-s-Accelerated-Gradient-Method.

[5] J. Langelaar. MNIST neural network training and testing. url: https://www.
mathworks.com/matlabcentral/fileexchange/73010-mnist-neural-
network-training-and-testing.

15

http://cs231n.github.io/neural-networks-3/#sgd
https://doi.org/10.1109/ICASSP.2013.6639349
https://github.com/ZhouYuxuanYX/Matlab-Implementation-of-Nesterov-s-Accelerated-Gradient-Method
https://github.com/ZhouYuxuanYX/Matlab-Implementation-of-Nesterov-s-Accelerated-Gradient-Method
https://www.mathworks.com/matlabcentral/fileexchange/73010-mnist-neural-network-training-and-testing
https://www.mathworks.com/matlabcentral/fileexchange/73010-mnist-neural-network-training-and-testing
https://www.mathworks.com/matlabcentral/fileexchange/73010-mnist-neural-network-training-and-testing

	Introduction
	Momentum Update
	The Idea behind the Momentum Update
	Nesterov Accelerated Gradient

	Applications of Nesterov Accelerated Gradient
	Insights into the Behaviour of The Nesterov Accelerated Gradient
	Derivation of a Second Order Differential Equation for the Nesterov Scheme
	Convergence Rate
	Strong Convexity

	Conclusion

